Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.

نویسندگان

  • J C Magee
  • M Carruth
چکیده

The role of dendritic voltage-gated ion channels in the generation of action potential bursting was investigated using whole cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons located in hippocampal slices of adult rats. Under control conditions somatic current injections evoked single action potentials that were associated with an afterhyperpolarization (AHP). After localized application of 4-aminopyridine (4-AP) to the distal apical dendritic arborization, the same current injections resulted in the generation of an afterdepolarization (ADP) and multiple action potentials. This burst firing was not observed after localized application of 4-AP to the soma/proximal dendrites. The dendritic 4-AP application allowed large-amplitude Na(+)-dependent action potentials, which were prolonged in duration, to backpropagate into the distal apical dendrites. No change in action potential backpropagation was seen with proximal 4-AP application. Both the ADP and action potential bursting could be inhibited by the bath application of nonspecific concentrations of divalent Ca(2+) channel blockers (NiCl and CdCl). Ca(2+) channel blockade also reduced the dendritic action potential duration without significantly affecting spike amplitude. Low concentrations of TTX (10-50 nM) also reduced the ability of the CA1 neurons to fire in the busting mode. This effect was found to be the result of an inhibition of backpropagating dendritic action potentials and could be overcome through the coordinated injection of transient, large-amplitude depolarizing current into the dendrite. Dendritic current injections were able to restore the burst firing mode (represented as a large ADP) even in the presence of high concentrations of TTX (300-500 microM). These data suggest the role of dendritic Na(+) channels in bursting is to allow somatic/axonal action potentials to backpropagate into the dendrites where they then activate dendritic Ca(2+) channels. Although it appears that most Ca(2+) channel subtypes are important in burst generation, blockade of T- and R-type Ca(2+) channels by NiCl (75 microM) inhibited action potential bursting to a greater extent than L-channel (10 microM nimodipine) or N-, P/Q-type (1 microM omega-conotoxin MVIIC) Ca(2+) channel blockade. This suggest that the Ni-sensitive voltage-gated Ca(2+) channels have the most important role in action potential burst generation. In summary, these data suggest that the activation of dendritic voltage-gated Ca(2+) channels, by large-amplitude backpropagating spikes, provides a prolonged inward current that is capable of generating an ADP and burst of multiple action potentials in the soma of CA1 pyramidal neurons. Dendritic voltage-gated ion channels profoundly regulate the processing and storage of incoming information in CA1 pyramidal neurons by modulating the action potential firing mode from single spiking to burst firing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ION CHANNELS Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons

The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayedrectifier K channel in shaping the dendritic action pote...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and ...

متن کامل

Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons.

Dual whole-cell patch clamp recordings from the soma and dendrites of CA1 pyramidal neurons located in hippocampal slices of adult rats were used to examine the potential mechanisms of phase precession. To mimic phasic synaptic input, 5-Hz sine wave current injections were simultaneously delivered both to the soma and apical dendrites (dendritic current was 180 degrees out-of-phase with soma). ...

متن کامل

Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons.

During low-frequency firing, action potentials actively invade the dendrites of CA1 pyramidal neurons. At higher firing rates, however, activity-dependent processes result in the attenuation of back-propagating action potentials, and propagation failures occur at some dendritic branch points. We tested two major hypotheses related to this activity-dependent attenuation of back-propagating actio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 1999